INSTRUCTIONAL MATERIAL

DEPARTMENT OF INFORMATION TECHNOLOGY

CREATING SMART CONTRACTS USING
ETHEREUM

Ms. G. BHUVANESHWARI

Assistant Professor
Department of Information Technology

LABOUR TO GLORY

TAGORE ENGINEERING COLLEGE
Rathinamangalam, Chennai-600 127

CREATING SMART CONTRACTS USING ETHEREUM

Deploy Your First Smart Contract (web3.university)

Step 1: Connect to the Ethereum network

There are many ways to make requests to the Ethereum chain. For simplicity, we’ll use a free
account on Alchemy, a blockchain developer platform and API that allows us to
communicate with the Ethereum chain without having to run our own nodes. The platform
also has developer tools for monitoring and analytics that we’ll take advantage of in this
tutorial to understand what’s going on under the hood in our smart contract deployment.

Step 2: Create your app (and API key)

Once you’ve created an Alchemy account, you can generate an API key by creating an app.
This will allow us to make requests to the Goerli test network. If you’re not familiar with
testnets, check out this guide.

Navigate to the “Create App” page in your Alchemy Dashboard by hovering over “Apps” in
the nav bar and clicking “Create App”

A alchemy e Ethereum 1.2 ~ e Apps = Explorer Composer Mempool Notify Enhanced APls

Hello World vewosans

Oms 28 0% 0

https://www.web3.university/tracks/create-a-smart-contract/deploy-your-first-smart-contract
https://docs.alchemyapi.io/guides/choosing-a-network

Name your app “Hello World”, offer a short description, select “Staging” for the

Environment (used for your app bookkeeping), and choose “Goerli” for your network.

Aalchemy 4 Ethereum+l2- s+ Explorer Composer Mempool MNetify Enhanced APls mwE ®waQ 2

Create App

Apps I APBS CREATED 1/5

NNNNNNN DescaiPTIoN cups LT

The thing I hate most about Alchemy is:

Step 3: Create an Ethereum account (address)

We need an Ethereum account to send and receive transactions. For this tutorial, we’ll use
Metamask, a virtual wallet in the browser used to manage your Ethereum account address. If
you want to understand more about how transactions on Ethereum work, check out this
page from the Ethereum foundation.You can download and create a Metamask account for
free here. When you are creating an account, or if you already have an account, make sure to
switch over to the “Goerli Test Network™ in the upper right (so that we’re not dealing with

real money).

! ’ @ Goerli Test Network ~ @
oy

Account]

=1

-

~

OETH

Buwy

Send

Assets Activity

Q O ETH >

Step 4: Add ether from a Faucet

In order to deploy our smart contract to the test network, we’ll need some fake Eth. To get
Eth you can go to the Goerli faucet and enter your Goerli account address, then click “Send
Me Eth.” It may take some time to receive your fake Eth due to network traffic. (At the time
of writing this, it took around 30 minutes.) You should see Eth in your MetaMask account
soon after!

Step 5: Check your Balance

To double check our balance is there, let’s make an eth getBalance request using Alchemy’s
composer tool. This will return the amount of Eth in our wallet. Check out this video for
instructions on how to use the composer tool!

After you input your Metamask account address and click “Send Request”, you should see a
response that looks like this:

{"jsonrpc": "2.0", "id": 0, "result": "0x2B5E3AF16B1880000"}

Step 6: Initialize our project

mkdir hello-world

cd hello-world

First, we’ll need to create a folder for our project. Navigate to your command line and type:

Now that we’re inside our project folder, we’ll use npm init to initialize the project. If you
don’t already have npm installed, follow these instructions (we’ll also need Node.js so
download that too!).

npm init # (or npm init --yes)

It doesn’t really matter how you answer the installation questions, here is how we did it for
reference:

package name: (hello-world)

version: (1.0.0)

description: hello world smart contract

entry point: (index.js)

test command:

git repository:

keywords:

author:

license: (ISC)

{

"name": "hello-world",
"version": "1.0.0",
"description": "hello world smart contract",
"main": "index.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
}s
o

"author": "",

"license": "ISC"

Step 7: Download Hardhat

Hardhat is a development environment to compile, deploy, test, and debug your Ethereum
software. It helps developers when building smart contracts and dApps locally before
deploying to the live chain.

Inside our hello-world project run:

npm install --save-dev hardhat

Step 8: Create Hardhat project

Inside our hello-world project folder, run:

npx hardhat

You should then see a welcome message and option to select what you want to do. Select

“create an empty hardhat.config.js”:

888 888 888 888 888
888 888 888 888 888
888 888 888 888 888

8888888888 8888
b. 888d888 .d8888Y 88888b. 8888b. 8888EY
888 888 "88b 888P" d8Y" 888 888 "88b "88b 8§88
888 888 .d888888 888 888 888 888 888 .d888YEE 888
888 888 888 888 888 Y88b 888 888 888 888 888 Y88b.
888 888 "Y8BEEBE 888 "YBEEEE 888 888 "YBBEEBEE "YEEY
. Welcome to Hardhat v2.0.11
What do you want to do? ...
Create a sample project
> Create an empty hardhat.config.js
Quit
This will generate a hardhat.config.js file for us, which is where we’ll specify all of the set up
for our project (on step 13).
Step 9: Add project folders
To keep our project organized we’ll create two new folders. Navigate to the root directory of

your hello-world project in your command line and type

mkdir contracts

mkdir scripts

contracts/ is where we’ll keep our hello world smart contract code file

scripts/ is where we’ll keep scripts to deploy and interact with our contract

Step 10: Write our contract

You might be asking yourself, when the heck are we going to write code?? Well, here we are,
on Step 10

Open up the hello-world project in your favorite editor (we like VSCode). Smart contracts are
written in a language called Solidity which is what we will use to write our HelloWorld.sol
smart contract.

1. Navigate to the “contracts” folder and create a new file called HelloWorld.sol

2. Below is a sample Hello World smart contract from the Ethereum Foundation that we will

be using for this tutorial. Copy and paste in the contents below into your HelloWorld.sol file,
and be sure to read the comments to under// Specifies the version of Solidity, using semantic
versioning.
/I Learn more: https://solidity.readthedocs.io/en/v0.5.10/layout-of-source-files.html#pragma
pragma solidity >=0.7.3;
/I Defines a contract named "HelloWorld".
/I' A contract is a collection of functions and data (its state). Once deployed, a contract resides
at a specific address on the Ethereum blockchain. Learn more:
https://solidity.readthedocs.io/en/v0.5.10/structure-of-a-contract.html
contract HelloWorld {

//Emitted when update function is called

//Smart contract events are a way for your contract to communicate that something
happened on the blockchain to your app front-end, which can be 'listening' for certain events
and take action when they happen.

event UpdatedMessages(string oldStr, string newStr);

// Declares a state variable ‘message” of type 'string’.

https://code.visualstudio.com/
https://ethereum.org/en/

// State variables are variables whose values are permanently stored in contract storage. The
keyword ‘public’ makes variables accessible from outside a contract and creates a function
that other contracts or clients can call to access the value.

string public message;

// Similar to many class-based object-oriented languages, a constructor is a special function
that is only executed upon contract creation.
// - Constructors are used to initialize the contract's data. Learn more:
https://solidity.readthedocs.io/en/v0.5.10/contracts.html#constructors
constructor (string memory initMessage) {
/I Accepts a string argument "initMessage’ and sets the value into the contract's "'message’
storage variable).
message = initMessage;
b
/I A public function that accepts a string argument and updates the 'message’ storage
variable.

function update(string memory newMessage) public

string memory oldMsg = message;
message = newMessage;

emit UpdatedMessages(oldMsg, newMessage);

}

stand what this contract does:

Step 11: Connect Metamask & Alchemy to your project

We’ve created a Metamask wallet, Alchemy account, and written our smart contract, now it’s
time to connect the three.

Every transaction sent from your virtual wallet requires a signature using your unique private
key. To provide our program with this permission, we can safely store our private key (and

Alchemy API key) in an environment file.

First, install the dotenv package in your project directory:
npm install dotenv --save
This is a super simple smart contract that stores a message upon creation and can be updated

by calling the update function.

A alchemy L xplorer Mempool Notify Enhanced APls

Drupe Apps

Backend Development = view

MEDIAN RESPONSE (SMIN) OTAL REQUESTS (24H) RATE LIMITED % (24H) (1] NVALID REQUESTS (24H @

e Got Support
DAILY REQUESTS

Your .env should look like this:

API_URL = "https://eth-goerli.alchemyapi.io/v2/your-api-key"

PRIVATE KEY = "your-metamask-private-key"

To actually connect these to our code, we’ll reference these wvariables in
our hardhat.config.js file on step 13.

Ethers.js is a library that makes it easier to interact and make requests to Ethereum by
wrapping standard JSON-RPC methods with more user-friendly methods.

Hardhat makes it super easy to integrate Plugins for additional tooling and extended
functionality. We’ll be taking advantage of the Ethers plugin for contract deployment
(Ethers.js has some super clean contract deployment methods).

In your project directory type:

npm install --save-dev @nomiclabs/hardhat-ethers "ethers@"5.0.0"

We’ll also require ethers in our hardhat.config.js in the next step.

Step 12: Install Ethers.js
Ethers.js is a library that makes it easier to interact and make requests to Ethereum by

wrapping standard JSON-RPC methods with more user friendly methods.

Hardhat makes it super easy to integrate Plugins for additional tooling and extended
functionality. We’ll be taking advantage of the Ethers plugin for contract deployment
(Ethers.js has some super clean contract deployment methods).
In your project directory type:
npm install --save-dev (@nomiclabs/hardhat-ethers "ethers@"5.0.0"
We’ll also require ethers in our hardhat.config.js in the next step.
Step 13: Update hardhat.config.jsWe’ve added several dependencies and plugins so far, now
we need to update hardhat.config.js so that our project knows about all of them.
Update your hardhat.config.js to look like this:
/**
* @type import('hardhat/config').HardhatUserConfig
*/
require('dotenv').config();
require("@nomiclabs/hardhat-ethers");
const { API URL, PRIVATE KEY } = process.env;
module.exports = {

solidity: "0.7.3",

defaultNetwork: "goerli",

networks: {

hardhat: {},
goerli: {
url: API_URL,
accounts: ['0x${PRIVATE KEY}']

h
2
}

Step 14: Compile our contract

https://docs.alchemyapi.io/alchemy/documentation/alchemy-api-reference/json-rpc
https://hardhat.org/plugins/
https://hardhat.org/plugins/nomiclabs-hardhat-ethers.html
https://github.com/ethers-io/ethers.js/

To make sure everything is working so far, let’s compile our contract. The compile task is one
of the built-in hardhat tasks.
From the command line run:
npx hardhat compile
You might get a warning about SPDX license identifier not provided in source file, but no
need to worry about that — hopefully everything else looks good!
If not, you can always message in the Alchemy discord.
Step 15: Write our deploy script
Now that our contract is written and our configuration file is good to go, it’s time to write our
contract deploy script.
Navigate to the /scripts folder and create a new file called deploy.js, adding the following
contents to it: sync function main() {

const HelloWorld = await ethers.getContractFactory("HelloWorld");

// Start deployment, returning a promise that resolves to a contract object

const hello_world = await HelloWorld.deploy("Hello World!");

console.log("Contract deployed to address:", hello world.address);
}
main()

.then(() => process.exit(0))

.catch(error => {

console.error(error);
process.exit(1);

3
Hardhat does an amazing job of explaining what each of these lines of code does in
their Contracts tutorial, we’ve adopted their explanations here.
const HelloWorld = await ethers.getContractFactory("HelloWorld");
A ContractFactory in ethers.js is an abstraction used to deploy new smart contracts,
so HelloWorld here is a factory for instances of our hello world contract. When using
the hardhat-ethers plugin ContractFactory and Contract, instances are connected to the first

signer (owner) by default.

const hello world = await HelloWorld.deploy();
Calling deploy() on a ContractFactory will start the deployment, and return a Promise that
resolves to a Contract object. This is the object that has a method for each of our smart

contract functions.

@ Etherscan All Filters~ ~ 1 Txn Hash / Block / Token
Goerli Testnet Network Home Blockchain + Tokens ~ Misc ~
. Contract 0xCAFBf889bef0617d9209Cf96f18c850e901A6D61 &
Contract Overview More Info More v
Balance: 0 Ether My Name Tag: Not Available
Creator: 0x129fc6083634958€6... at txn 0x77055932b20993a2d4..
Transactions Contract® Events
IF Latest 1 from a total of 1 ransactions
Txn Hash Method (@ Block Age From T To T Value Txn Fee
@ 0x77055932b20993a2d4... 0x60B0GO40 6941491 10 hrs 22 mins ago 0x129fc60836349e58¢€6.. IN Contract Creation 0 Ether

[Downioad CSV Export &

‘0" A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.

The From address should match your Metamask account address and the To address will say
“Contract Creation” but if we click into the transaction we’ll see our contract address in the

To field:

/} alchemy Dashboard Apps ~ Explorer Composer Mempool Notify Enhanced APIs
Explorer @ ClearFitters 5, RefreshResults Results found: 11
OEEP DIVE INTO ALLOF YOUR
Hello World N« verioo app ERRORCODE HTTP RESPONSETIME SENT NETWORK
1 eth_getTransactiondybash Hello World) amago Ropsten w A
TiME ~
PARAMS RAW REQUES Wcory | RESULT RAN RESPONSE @ & cory
@ Last 5 minutes
= fa309¢¢5¢ nu
O Last hour * aheszae HHazentes ‘::
nu.
O Lastday x618ae! 87f ac28 "
O Last 10 days 248373
O Custom 1213364312
x36b257006c2238831489c3d " 12t
HTTP STATUS -~ 15
ox2c7cadefa: 16¢¢¢£cb617100317
®an 8x475eef6cdd d6cddb2ede2(73c
O Success ull
5 null
) Client Error 4

O Rate Limited

O server Error

O custom 2 eth_chainld Hella Norld o tmago Ropsten = v
S jethisendmTranisotion Hello Morld o smage Ropsten (=l v
JSON-RPC ERROR CODE ol
4 Hello World o 3m ago Ropsten - v
® Al
2 5 ethgetTransactionCount Hello Rorld anage Ropsten me v
D Invalid Request i ° i "
O Whitelisting Error 6 eth_gasPrice Hello World Q 3m ago Ropsten o
o
Execuliof Efror 7 eth_estimateGas Hello World o Ropsten v
ransaction Send Error
8 ethc Hello World Ropsten v
ther ° 4
O Custom 9 eth_chaind Hello World o mage Ropsten me v
10 webd_client¥arsion Hello Korld © nage Ropsten me v
JSON-RPC METHOD v
1 web3_clientvarsion Hello Horld o mago Ropsten v
DURATION v

Congrats! You just deployed a smart contract to the Ethereum chain &=

To understand what’s going on under the hood, let’s navigate to the Explorer tab in
our Alchemy dashboard . If you have multiple Alchemy apps make sure to filter by app and
select “Hello World”.

Transaction Details < >

Overview State

[This is a Goerli Testnet transaction only |

(3 Transaction Hash Ox77055932b20993a2d4be6fa27c2f4240b232f84303e157ecad8cab4ad6642171 (D
7 Status: & Success

Z) Block: 6941491 2497 Block Confirmations

& Timestamp: @ 10 hrs 25 mins ago (May-24-2022 04:05:12 PM +UTC)

=) From: 0x129fc60836349

= To: [Contract Oxcafbfegsbef0617d9209cfa6f18c850e801a6d61 Created] & [
2 walue: 0 Ether ($0.00)

) Transaction Fee: 0.001707 160003072888 Ether (50.00)

% Gas Price: 0.000000005000000002 Ether (5.000000009 Gwei)

Click to see More

3¢ A transaction is a cryptographically signed instruction from an account that changes the state of the blockchain. Block explorers track the details of all transactions in the

