

INSTRUCTIONAL MATERIAL

DEPARTMENT OF INFORMATION TECHNOLOGY

 CREATING SMART CONTRACTS USING

ETHEREUM

Ms. G. BHUVANESHWARI
Assistant Professor

Department of Information Technology

TAGORE ENGINEERING COLLEGE

Rathinamangalam, Chennai-600 127

CREATING SMART CONTRACTS USING ETHEREUM

Deploy Your First Smart Contract (web3.university)

Step 1: Connect to the Ethereum network

There are many ways to make requests to the Ethereum chain. For simplicity, we’ll use a free

account on Alchemy, a blockchain developer platform and API that allows us to

communicate with the Ethereum chain without having to run our own nodes. The platform

also has developer tools for monitoring and analytics that we’ll take advantage of in this

tutorial to understand what’s going on under the hood in our smart contract deployment.

Step 2: Create your app (and API key)

Once you’ve created an Alchemy account, you can generate an API key by creating an app.

This will allow us to make requests to the Goerli test network. If you’re not familiar with

testnets, check out this guide.

Navigate to the “Create App” page in your Alchemy Dashboard by hovering over “Apps” in

the nav bar and clicking “Create App”

https://www.web3.university/tracks/create-a-smart-contract/deploy-your-first-smart-contract
https://docs.alchemyapi.io/guides/choosing-a-network

Name your app “Hello World”, offer a short description, select “Staging” for the

Environment (used for your app bookkeeping), and choose “Goerli” for your network.

Step 3: Create an Ethereum account (address)

We need an Ethereum account to send and receive transactions. For this tutorial, we’ll use

Metamask, a virtual wallet in the browser used to manage your Ethereum account address. If

you want to understand more about how transactions on Ethereum work, check out this

page from the Ethereum foundation.You can download and create a Metamask account for

free here. When you are creating an account, or if you already have an account, make sure to

switch over to the “Goerli Test Network” in the upper right (so that we’re not dealing with

real money).

Step 4: Add ether from a Faucet

In order to deploy our smart contract to the test network, we’ll need some fake Eth. To get

Eth you can go to the Goerli faucet and enter your Goerli account address, then click “Send

Me Eth.” It may take some time to receive your fake Eth due to network traffic. (At the time

of writing this, it took around 30 minutes.) You should see Eth in your MetaMask account

soon after!

Step 5: Check your Balance

To double check our balance is there, let’s make an eth_getBalance request using Alchemy’s

composer tool. This will return the amount of Eth in our wallet. Check out this video for

instructions on how to use the composer tool!

After you input your Metamask account address and click “Send Request”, you should see a

response that looks like this:

{"jsonrpc": "2.0", "id": 0, "result": "0x2B5E3AF16B1880000"}

Step 6: Initialize our project

mkdir hello-world

cd hello-world

First, we’ll need to create a folder for our project. Navigate to your command line and type:

Now that we’re inside our project folder, we’ll use npm init to initialize the project. If you

don’t already have npm installed, follow these instructions (we’ll also need Node.js so

download that too!).

npm init # (or npm init --yes)

It doesn’t really matter how you answer the installation questions, here is how we did it for

reference:

package name: (hello-world)

version: (1.0.0)

description: hello world smart contract

entry point: (index.js)

test command:

git repository:

keywords:

author:

license: (ISC)

About to write to /Users/.../.../.../hello-world/package.json:

{

 "name": "hello-world",

 "version": "1.0.0",

 "description": "hello world smart contract",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC"

}

Step 7: Download Hardhat

Hardhat is a development environment to compile, deploy, test, and debug your Ethereum

software. It helps developers when building smart contracts and dApps locally before

deploying to the live chain.

Inside our hello-world project run:

npm install --save-dev hardhat

Step 8: Create Hardhat project

Inside our hello-world project folder, run:

npx hardhat

You should then see a welcome message and option to select what you want to do. Select

“create an empty hardhat.config.js”:

888 888 888 888 888

888 888 888 888 888

888 888 888 888 888

8888888888 8888

b. 888d888 .d88888 88888b. 8888b. 888888

888 888 "88b 888P" d88" 888 888 "88b "88b 888

888 888 .d888888 888 888 888 888 888 .d888888 888

888 888 888 888 888 Y88b 888 888 888 888 888 Y88b.

888 888 "Y888888 888 "Y88888 888 888 "Y888888 "Y888

 Welcome to Hardhat v2.0.11

What do you want to do? …

Create a sample project

❯ Create an empty hardhat.config.js

Quit

This will generate a hardhat.config.js file for us, which is where we’ll specify all of the set up

for our project (on step 13).

Step 9: Add project folders

To keep our project organized we’ll create two new folders. Navigate to the root directory of

your hello-world project in your command line and type

mkdir contracts

mkdir scripts

contracts/ is where we’ll keep our hello world smart contract code file

scripts/ is where we’ll keep scripts to deploy and interact with our contract

Step 10: Write our contract

You might be asking yourself, when the heck are we going to write code?? Well, here we are,

on Step 10

Open up the hello-world project in your favorite editor (we like VSCode). Smart contracts are

written in a language called Solidity which is what we will use to write our HelloWorld.sol

smart contract.

1. Navigate to the “contracts” folder and create a new file called HelloWorld.sol

2. Below is a sample Hello World smart contract from the Ethereum Foundation that we will

be using for this tutorial. Copy and paste in the contents below into your HelloWorld.sol file,

and be sure to read the comments to under// Specifies the version of Solidity, using semantic

versioning.

// Learn more: https://solidity.readthedocs.io/en/v0.5.10/layout-of-source-files.html#pragma

pragma solidity >=0.7.3;

// Defines a contract named `HelloWorld`.

// A contract is a collection of functions and data (its state). Once deployed, a contract resides

at a specific address on the Ethereum blockchain. Learn more:

https://solidity.readthedocs.io/en/v0.5.10/structure-of-a-contract.html

contract HelloWorld {

 //Emitted when update function is called

 //Smart contract events are a way for your contract to communicate that something

happened on the blockchain to your app front-end, which can be 'listening' for certain events

and take action when they happen.

 event UpdatedMessages(string oldStr, string newStr);

 // Declares a state variable `message` of type `string`.

https://code.visualstudio.com/
https://ethereum.org/en/

 // State variables are variables whose values are permanently stored in contract storage. The

keyword `public` makes variables accessible from outside a contract and creates a function

that other contracts or clients can call to access the value.

 string public message;

 // Similar to many class-based object-oriented languages, a constructor is a special function

that is only executed upon contract creation.

 // Constructors are used to initialize the contract's data. Learn more:

https://solidity.readthedocs.io/en/v0.5.10/contracts.html#constructors

 constructor (string memory initMessage) {

 // Accepts a string argument `initMessage` and sets the value into the contract's `message`

storage variable).

 message = initMessage;

 }

 // A public function that accepts a string argument and updates the `message` storage

variable.

 function update(string memory newMessage) public

{

 string memory oldMsg = message;

 message = newMessage;

 emit UpdatedMessages(oldMsg, newMessage);

 }

}

stand what this contract does:

Step 11: Connect Metamask & Alchemy to your project

We’ve created a Metamask wallet, Alchemy account, and written our smart contract, now it’s

time to connect the three.

Every transaction sent from your virtual wallet requires a signature using your unique private

key. To provide our program with this permission, we can safely store our private key (and

Alchemy API key) in an environment file.

First, install the dotenv package in your project directory:

npm install dotenv --save

This is a super simple smart contract that stores a message upon creation and can be updated

by calling the update function.

Your .env should look like this:

API_URL = "https://eth-goerli.alchemyapi.io/v2/your-api-key"

PRIVATE_KEY = "your-metamask-private-key"

To actually connect these to our code, we’ll reference these variables in

our hardhat.config.js file on step 13.

Ethers.js is a library that makes it easier to interact and make requests to Ethereum by

wrapping standard JSON-RPC methods with more user-friendly methods.

Hardhat makes it super easy to integrate Plugins for additional tooling and extended

functionality. We’ll be taking advantage of the Ethers plugin for contract deployment

(Ethers.js has some super clean contract deployment methods).

In your project directory type:

npm install --save-dev @nomiclabs/hardhat-ethers "ethers@^5.0.0"

We’ll also require ethers in our hardhat.config.js in the next step.

Step 12: Install Ethers.js

Ethers.js is a library that makes it easier to interact and make requests to Ethereum by

wrapping standard JSON-RPC methods with more user friendly methods.

Hardhat makes it super easy to integrate Plugins for additional tooling and extended

functionality. We’ll be taking advantage of the Ethers plugin for contract deployment

(Ethers.js has some super clean contract deployment methods).

In your project directory type:

npm install --save-dev @nomiclabs/hardhat-ethers "ethers@^5.0.0"

We’ll also require ethers in our hardhat.config.js in the next step.

Step 13: Update hardhat.config.jsWe’ve added several dependencies and plugins so far, now

we need to update hardhat.config.js so that our project knows about all of them.

Update your hardhat.config.js to look like this:

/**

* @type import('hardhat/config').HardhatUserConfig

*/

require('dotenv').config();

require("@nomiclabs/hardhat-ethers");

const { API_URL, PRIVATE_KEY } = process.env;

module.exports = {

 solidity: "0.7.3",

 defaultNetwork: "goerli",

 networks: {

 hardhat: {},

 goerli: {

 url: API_URL,

 accounts: [`0x${PRIVATE_KEY}`]

 }

 },

}

Step 14: Compile our contract

https://docs.alchemyapi.io/alchemy/documentation/alchemy-api-reference/json-rpc
https://hardhat.org/plugins/
https://hardhat.org/plugins/nomiclabs-hardhat-ethers.html
https://github.com/ethers-io/ethers.js/

To make sure everything is working so far, let’s compile our contract. The compile task is one

of the built-in hardhat tasks.

From the command line run:

npx hardhat compile

You might get a warning about SPDX license identifier not provided in source file, but no

need to worry about that — hopefully everything else looks good!

If not, you can always message in the Alchemy discord.

Step 15: Write our deploy script

Now that our contract is written and our configuration file is good to go, it’s time to write our

contract deploy script.

Navigate to the /scripts folder and create a new file called deploy.js, adding the following

contents to it: sync function main() {

 const HelloWorld = await ethers.getContractFactory("HelloWorld");

 // Start deployment, returning a promise that resolves to a contract object

 const hello_world = await HelloWorld.deploy("Hello World!");

 console.log("Contract deployed to address:", hello_world.address);

}

main()

 .then(() => process.exit(0))

 .catch(error => {

 console.error(error);

 process.exit(1);

 });

Hardhat does an amazing job of explaining what each of these lines of code does in

their Contracts tutorial, we’ve adopted their explanations here.

const HelloWorld = await ethers.getContractFactory("HelloWorld");

A ContractFactory in ethers.js is an abstraction used to deploy new smart contracts,

so HelloWorld here is a factory for instances of our hello world contract. When using

the hardhat-ethers plugin ContractFactory and Contract, instances are connected to the first

signer (owner) by default.

const hello_world = await HelloWorld.deploy();

Calling deploy() on a ContractFactory will start the deployment, and return a Promise that

resolves to a Contract object. This is the object that has a method for each of our smart

contract functions.

The From address should match your Metamask account address and the To address will say

“Contract Creation” but if we click into the transaction we’ll see our contract address in the

To field:

Congrats! You just deployed a smart contract to the Ethereum chain

To understand what’s going on under the hood, let’s navigate to the Explorer tab in

our Alchemy dashboard . If you have multiple Alchemy apps make sure to filter by app and

select “Hello World”.

